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Abstract

In this paper we establish a direct connection between stable approximate unitary
equivalence for ∗-homomorphisms and the topology of the KK-groups which avoids
entirely C*-algebra extension theory and does not require nuclearity assumptions.
To this purpose we show that a topology on the Kasparov groups can be defined
in terms of approximate unitary equivalence for Cuntz pairs and that this topology
coincides with both Pimsner’s topology and the Brown-Salinas topology. We study
the generalized Rørdam group KL(A,B) = KK(A,B)/0̄ and prove that if a sepa-
rable exact residually finite dimensional C*-algebra satisfies the universal coefficient
theorem in KK-theory then it embeds in the UHF algebra of type 2∞. In particular
such an embedding exists for the C*-algebra of a second countable amenable locally
compact maximally almost periodic group.

Key words: KK-theory, C*-algebras, amenable groups

1 Introduction

Two ∗-homomorphisms ϕ, ψ : A → B are unitarily equivalent if uϕu∗ = ψ
for some unitary u ∈ B. They are approximately unitarily equivalent, written
ϕ ≈u ψ, if there is a sequence (un)n∈N of unitaries in B such that

lim
n→∞

‖unϕ(a)u∗n − ψ(a)‖ = 0

for all a ∈ A. Stable approximate unitary equivalence is a more elaborated con-
cept introduced in Def. 3.7. According to Glimm’s theorem any non type I sep-
arable C*-algebra has uncountably many non unitarily equivalent irreducible
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URL: http://www.math.purdue.edu/~mdd (Marius Dadarlat).



representations with the same kernel. In contrast, by Voiculescu’s theorem,
two irreducible representations of a separable C*-algebra have the same ker-
nel if and only if they are approximately unitarily equivalent. A comparison of
the above results suggests that the notion of unitary equivalence is sometimes
too rigid and that for certain purposes one can do more things by working
with approximate unitary equivalence. This point of view is illustrated by
Elliott’s intertwining argument: if ϕ : A → B and ψ : B → A are unital
∗-homomorphisms between separable C*-algebras such that ϕψ ≈u idB and
ψϕ ≈u idA, then A is isomorphic to B. It is therefore very natural to study
approximate unitary equivalence of ∗-homomorphisms in a general context.

Two approximately unitarily equivalent ∗-homomorphisms ϕ, ψ : A → B in-
duce the same map on K-theory with coefficients, but they may not coincide
at the level of KK-theory. In order to handle this situation, Rørdam intro-
duced the group KL(A,B) as the quotient of Ext−1(SA,B) ∼= KK(A,B)
by the subgroup PExt(K∗−1(A), K∗(B)) of Ext(K∗−1(A), K∗(B)) generated
by pure group extensions [22]. This required the assumption that A satisfies
the universal coefficient theorem (UCT) of [24]. Using a mapping cylinder
construction, Rørdam showed that two approximately unitarily equivalent
∗-homomorphisms have the same class in KL(A,B). On the other hand, a
topology on the Ext-theory groups was considered by Brown-Douglas-Fillmore
[4], and shown to have interesting applications in [3] and [25]. This topology,
called hereafter the Brown-Salinas topology, is defined via approximate unitary
equivalence of extensions. It was further investigated by Schochet in [28,29]
and by the author in [7]. Schochet showed that the Kasparov product is con-
tinuous with respect to the Brown-Salinas topology for K-nuclear separable
C*-algebras. An important idea from [28,29] is that one can use the continuity
of the Kasparov product in order to transfer structural properties between KK-
equivalent C*-algebras. As it turns out, the subgroup PExt(K∗−1(A), K∗(B))
of Ext−1(SA,B) coincides with the closure of zero in the Brown-Salinas topol-
ogy under the assumption that A is nuclear and satisfies the UCT. It is
then quite natural to define KL(A,B) for arbitrary separable C*-algebras
as Ext−1(SA,B)/0̄ as proposed by H. Lin in [18]. Nevertheless, the study of
∗-homomorphisms from A to B via their class in Ext−1(SA,B) is not optimal
and leads to rather involved arguments as those in [16,18] and [7] where the
Brown-Salinas topology of Ext−1(SA,B) is related, in the nuclear case, to
stable approximate unitary equivalence of ∗-homomorphisms from A to B.

Kasparov’s KK-theory admits several equivalent descriptions. This deep fea-
ture enables one to choose working with the picture that is most effective in a
given situation. Similarly, there are several (and as we are going to see, equiv-
alent) ways to introduce a topology on the KK-groups. The Brown-Salinas
topology was already mentioned. In a recent important paper [20], Pimsner
defines a topology on equivariant graded KK-theory and proves the continuity
of the Kasparov product in full generality. The convergence of sequences in
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Pimsner’s topology admits a particularly nice and simple algebraic description
which leads to major simplifications of the theory. However, these descriptions
of the topology of KK(A,B) do not appear to be well adapted for the study
of approximate unitary equivalence of ∗-homomorphisms.

In this paper we introduce a topology on KK(A,B) in terms of Cuntz pairs
and approximate unitary equivalence. We then show that this topology coin-
cides with Pimsner’s topology (Thms. 3.2 and 3.4). Our arguments rely on
a result of Thomsen [31] and on [12]. Two ∗-homomorphisms from A to B
is the simplest instance of a Cuntz pair. However, since in general the Kas-
parov group KK(A,B) is not generated by ∗-homomorphisms from A to B,
it becomes necessary to work with Cuntz pairs. We revisit Rørdam’s group
KK(A,B)/0̄ in our general setting and show that it is a polish group (cf.
[28]) when endowed with the (quotient of) Pimsner’s topology for arbitrary
separable C*-algebras (see Prop. 2.8). Along the way we show that the Brown-
Salinas topology coincides with Pimsner’s topology (Prop. 6.2) and we give a
series of applications which include:

(i) two ∗-homomorphisms are stably approximately unitarily equivalent if and
only if their KK-theory classes are equal modulo the closure of zero (see
Cor. 3.9, 3.8.)

(ii) If a separable C*-algebra A satisfies the universal coefficient theorem in
KK-theory (UCT), thenKK(A,B)/ 0̄ is homeomorphic toHomΛ(K(A), K(B))
endowed with the topology of pointwise convergence (see Thm. 4.1). Thus in
order to check that two KK-elements are close to each other it suffices to show
that the maps they induce on K(−) agree on a ”big enough” finite piece!

(iii) If a separable exact residually finite dimensional C*-algebra satisfies the
UCT then it embeds in the UHF algebra of type 2∞ denoted by B. (see
Thm. 4.4). In particular the C*-algebra of a second countable amenable locally
compact maximally almost periodic group embeds in B.

(iv) We give a short proof of a theorem of H. Lin, [18], stating that two unital
∗-homomorphisms between Kirchberg C*-algebras are approximately unitarily
equivalent if and only if their KL-classes coincide. This is used to show that
a separable nuclear C*-algebra satisfies the approximate universal coefficient
theorem of [18] if and only if it satisfies the UCT (Thm. 5.6), answering a
question of H. Lin from [18].

For A in the bootstrap category, one can derive (ii) from [29] and [11]. Its
generalization to the nonnuclear case is necessary in view of applications such
as (iii). The latter result was given a more complicated proof in an earlier
preprint [5] which is now superseded by the present paper. A definition of
the topology of KKnuc(A,B) has also appeared there but it became a more
useful tool after the emergence of [20]. The author is grateful to M. Pimsner
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for providing him with a draft of [20].

2 Metric structure

In this section we define an invariant pseudometric d on KK(A,B) which
makes it a complete separable topological group. This is done by using a
description of KK(A,B) based on Cuntz pairs and the asymptotic unitary
equivalence of [12].

The C*-algebras in this paper, denoted by A, B, C,... will be assumed to be
separable. We only consider Hilbert B-bimodules, E, F ,... that are countably
generated. The notation HB is reserved for the canonical Hilbert B-bimodule
obtained as the completion of ℓ2(N)⊗alg B. As in [14] we identify M(B ⊗K)
with L(HB). A unital ∗-homomorphism γ : A→ L(HB) is called unitally ab-
sorbing (for the pair of C*-algebras (A,B)) if for any unital ∗-homomorphism
ϕ : A → L(HB) there is a sequence of unitaries un ∈ L(HB, HB ⊕ HB) such
that for all a ∈ A:

(i) limn→∞ ‖u
∗
n (ϕ(a)⊕ γ(a)) un − γ(a)‖ = 0

(ii) u∗n (ϕ(a)⊕ γ(a)) un − γ(a) ∈ K(HB)

A ∗-homomorphism γ : A → L(HB) is called absorbing if its unitalization
γ̃ : Ã → L(HB) is unitally absorbing. The theorems of Voiculescu [33] and
Kasparov [14] exhibit large classes of absorbing ∗-homomorphisms. Thomsen
[31] proved the existence of absorbing ∗-homomorphisms for arbitrary separa-
ble C*-algebras.

Let Ec(A,B) denote the set of all Cuntz pairs (ϕ, ψ). They are ∗-homomorphisms
ϕ, ψ : A → L(HB) such that ϕ(a) − ψ(a) ∈ K(HB) for all a ∈ A. It is was
shown by Cuntz that KK(A,B) can be defined as the group of homotopy
classes of Cuntz pairs. In our joint work with Eilers we proved that KK(A,B)
can be realized in terms of proper asymptotic unitary equivalence classes of
Cuntz pairs:

Theorem 2.1 ([12]) Let A, B be separable C*-algebras and let (ϕ, ψ) : A→
L(HB) be a Cuntz pair. The following are equivalent:

(i) [ϕ, ψ] = 0 in KK(A,B).

(ii) There is a ∗-homomorphism γ : A → L(HB) and there is a continuous
unitary valued map t 7→ ut ∈ 1 + K(HB ⊕ HB), t ∈ [0,∞) such that for all
a ∈ A

lim
t→∞
‖ut (ϕ(a)⊕ γ(a)) u∗t − ψ(a)⊕ γ(a)‖ = 0 (1)
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(iii) For any absorbing ∗-homomorphism γ : A→ L(HB) there is a continuous
unitary valued map t 7→ ut ∈ I + K(HB ⊕ HB), t ∈ [0,∞) satisfying (1) for
all a ∈ A.

This theorem suggests the following construction of a pseudometric onKK(A,B).

Let (ai)
∞
i=1 be a dense sequence in the unit ball of A. If ϕ, ψ : A → L(E) are

ccp maps, we define

δ0(ϕ, ψ) =
∞
∑

i=1

1

2i
‖ϕ(ai)− ψ(ai)‖,

δγ(ϕ, ψ) = inf{δ0(ϕ⊕ γ, u(ψ ⊕ γ)u
∗) : u ∈ 1 +K(E ⊕ F ) unitary },

where γ : A→ L(F ) is an absorbing ∗-homomorphism. Recall that if γi : A→
L(Fi), i = 1, 2 are ∗-homomorphisms, we write γ1 ∼ γ2 if there is a sequence
of unitaries wn ∈ L(F1, F2) such that

lim
n→∞

‖wnγ1(a)w
∗

n − γ2(a)‖ = 0 (2)

for all a ∈ A.

Lemma 2.2 With notation as above, if γ1 ∼ γ2 then δγ1
(ϕ, ψ) = δγ2

(ϕ, ψ).

Proof. If w ∈ L(F1, F2) is a unitary, then δγ1
(ϕ, ψ) = δwγ1w∗(ϕ, ψ), since

conjugation by 1⊕ w maps 1 +K(E ⊕ F1) to 1 +K(E ⊕ F2). 2

The above lemma applies whenever γi are absorbing ∗-homomorphisms. There-
fore we can define δ(ϕ, ψ) = δγ(ϕ, ψ) for some absorbing ∗-homomorphism γ
and this does not depend on the γ.

Lemma 2.3 With notation as above

(a) If w ∈ L(E,F ) is a unitary, then δ(wϕw∗, wψw∗) = δ(ϕ, ψ),

(b) If η : A→ L(F ) then δ(ϕ, ψ) = δ(ϕ⊕ η, ψ ⊕ η).

Proof. For part (a) one argues as in the proof of the previous lemma. For
part (b) one uses the observation that γ ⊕ η is absorbing whenever γ is ab-
sorbing. 2

Using a notation from Section 3, if ϕ, ψ : A → L(E) are ∗-homomorphisms,
we write (ϕ) ≈ (ϕ′) if there is a sequence of unitaries un ∈ 1+K(E) such that
limn→∞ ‖unϕ(a)u∗n − ψ(a)‖ = 0 for all a ∈ A.
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Lemma 2.4 Let ϕ, ψ : A→ L(E) and ϕ′, ψ′ : A→ L(E) be ∗-homomorphisms.
Assume that (ϕ) ≈ (ϕ′) and (ψ) ≈ (ψ′). Then δ(ϕ, ψ) = δ(ϕ′, ψ′).

Proof. This is an immediate consequence of the definition of δ. 2

We are now ready to introduce a pseudometric d on Ec(A,B). A pseudometric
satisfies all the properties of a metric except that d(x, y) = 0 may not imply
x = y.

Definition 2.5

d((ϕ, ψ), (ϕ′, ψ′)) = δ(ϕ⊕ ψ′, ψ ⊕ ϕ′).

Let us observe that if [ϕ, ψ] = 0 ∈ KK(A,B) then d((ϕ, ψ), (0, 0)) = δ(ϕ, ψ) =
0 by the implication (i) ⇒ (ii) of Theorem 2.1.

Lemma 2.6 If x, x′ ∈ Ec(A,B) and [x] = [x′] in KK(A,B) then d(x, x′) = 0.

Proof. If x = [ϕ, ψ] and x = [ϕ′, ψ′] then [x]− [x′] = [ϕ⊕ ψ′, ψ⊕ ϕ′] = 0. By
Theorem 2.1 this implies δ(ϕ⊕ ψ′, ψ ⊕ ϕ′) = 0 hence d(x, x′) = 0. 2

Proposition 2.7 d is a pseudometric on Ec(A,B) that descends to an invari-
ant pseudometric on KK(A,B) (denoted again by d).

Proof. First we show that d is a pseudometric on Ec(A,B). Let x = (ϕ, ψ), x′ =
(ϕ′, ψ′) ∈ Ec(A,B). Then d(x, x) = 0 by Lemma 2.6. The equality d(x, x′) =
d(x′, x) is equivalent to δ(ϕ⊕ψ′, ψ⊕ϕ′) = δ(ϕ′⊕ψ, ψ′⊕ϕ). The latter equality
follows from Lemma 2.3(a) with w a permutation unitary and the symmetry
of δ. In order to verify the triangle inequality for d we first observe that if
α, α′, α′′ : A→ L(E) then

δ(α, α′) + δ(α′, α′′) ≥ δ(α, α′′). (3)

This is obvious for δ0 and follows immediately for δγ and hence for δ. Let
x′′ = (ϕ′′, ψ′′) ∈ Ec(A,B). The inequality d(x, x′) + d(x′, x′′) ≥ d(x, x′′) is
equivalent to

δ(ϕ⊕ ψ′, ψ ⊕ ϕ′) + δ(ϕ′ ⊕ ψ′′, ψ′ ⊕ ϕ′′) ≥ δ(ϕ⊕ ψ′′, ψ ⊕ ϕ′′) (4)

By Lemma 2.3

δ(ϕ⊕ψ′′, ψ⊕ϕ′′) = δ(ϕ⊕ψ′′⊕ψ′, ψ⊕ϕ′′⊕ψ′) = δ(ϕ⊕ψ′⊕ψ′′, ψ⊕ψ′⊕ϕ′′)
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with the latter term less than or equal to δ(ϕ⊕ψ′⊕ψ′′, ψ⊕ϕ′⊕ψ′′)+δ(ψ⊕ϕ′⊕
ψ′′, ψ⊕ψ′⊕ϕ′′) by (3). Finally δ(ϕ⊕ψ′⊕ψ′′, ψ⊕ϕ′⊕ψ′′) = δ(ϕ⊕ψ′, ψ⊕ϕ′)
and δ(ψ ⊕ ϕ′ ⊕ ψ′′, ψ ⊕ ψ′ ⊕ ϕ′′) = δ(ϕ′ ⊕ ψ′′, ψ′ ⊕ ϕ′′) by Lemma 2.3. This
proves the inequality (4).

Next we are going to verify that d descends to a metric on KK(A,B). By
symmetry it suffices to prove that if x, x′, x′′ ∈ Ec(A,B) and [x′] = [x′′] in
KK(A,B) then d(x, x′′) ≤ d(x, x′). By Lemma 2.6, d(x′, x′′) = 0. Since d is a
pseudometric, d(x, x′′) ≤ d(x, x′) + d(x′, x′′) = d(x, x′).

It remains to verify the invariance of the pseudometric. We show that d(x ⊕
y, x′ ⊕ y) = d(x, x′) for all x, x′, y ∈ Ec(A,B). Let d̂([x], [x′]) = d(x, x′) denote
(temporarily) the induced metric on KK(A,B). We claim that d(x, x′) =
d̂([x] − [x′], 0). Indeed, if x = (ϕ, ψ) and x = (ϕ′, ψ′) then d(x, x′) = δ(ϕ ⊕
ψ′, ψ ⊕ ϕ′) by definition, and d̂([x] − [x′], 0) = d((ϕ ⊕ ψ′, ψ ⊕ ϕ′), (0, 0)) =
δ(ϕ⊕ ψ′, ψ ⊕ ϕ′). 2

Proposition 2.8 Let A be B be separable C*-algebras. The topology of KK(A,B)
defined by the pseudometric d satisfies the second axiom of countability. If 0̄
denotes the closure of zero, then KK(A,B)/ 0̄ is a polish group.

Proof. Fix an absorbing ∗-homomorphism γ : A→ L(HB). Recall that by a
result of Thomsen [31, Thm. 3.2] every element of KK(A,B) is represented
by a Cuntz pair (α, γ). Therefore the image of each map α is contained in
the separable C*-algebra γ(A) + K(HB). This shows that the topology of
KK(A,B) satisfies the second axiom of countability.

Next we prove the completeness of KK(A,B). Let (xn) be a Cauchy sequence
in Ec(A,B) where xn = (αn, γ) with γ : A → L(HB) as above. This means
that d(xn, xm) = δ(αn ⊕ γ, γ ⊕ αm) → 0 as m,n → ∞. Since δ(αm ⊕ γ, γ ⊕
αm) = d(xm, xm) = 0, we have δ(αn ⊕ γ, αm ⊕ γ) → 0 as m,n → ∞. Since
[αn, γ] = [αn ⊕ γ, γ ⊕ γ] in KK(A,B) we may assume that δ(αn, αm) → 0
as m,n → ∞. After passing to a subsequence of (αn), if necessary, we find a
sequence of unitaries un ∈ 1+K(HB) such that δ0(αn, un+1αn+1u

∗
n+1) < 1/2n.

Define α′
n(a) = (u2 · · ·un)αn(a)(u2 · · ·un)∗ and note that (α′

n) is a Cauchy
sequence inHom(A,L(HB)) since δ0(α

′
n, α

′
n+1) < 1/2n. Since Hom(A,L(HB))

is complete, (α′
n) converges to a ∗-homomorphism α with the property that

α(a) − γ(a) ∈ K(HB) since α′
n(a) − γ(a) ∈ K(HB) for all a ∈ A. It follows

that [αn, γ] = [α′
n, γ] converges to [α, γ] in KK(A,B). 2

Proposition 2.8 does not follow from [28] since we do not assume A to be
K-nuclear and we are working a priori with a different topology.
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3 Approximate unitary equivalence for Cuntz pairs

In this section we show that the approximate unitary equivalence of Cuntz
pairs can be expressed in KK-theoretical terms, see Theorem 3.2. Conse-
quently, the topology of KK(A,B) defined by d coincides with Pimsner’s
topology, see Theorem 3.4. In the final part we apply these results to ∗-
homomorphisms.

We begin with a preliminary result on absorbing ∗-homomorphisms. We need
some notation. Let F ⊂ A be a finite subset and let ε > 0. If ϕ : A →
LB(E) and ψ : A → LB(F ) are two contractive completely positive maps
(abbreviated ccp), we write ϕ ≺

F,ε
ψ if there is an isometry v ∈ LB(E,F ) such

that ‖ϕ(a)−v∗ψ(a)v‖ < ε for all a ∈ F . If v can be taken to be a unitary then
we write ϕ ∼

F,ε
ψ. We write ϕ ≺ ψ (respectively ϕ ∼ ψ) if ϕ ≺

F,ε
ψ (respectively

ϕ ∼
F,ε
ψ) for all finite sets F and ε > 0. Note that if ϕ ≺

F,ε1

ψ and ψ ≺
F,ε2

γ, then

ϕ ≺
F,ε1+ε2

γ.

Proposition 3.1 Let A, B, C be separable C*-algebras with B stable and
C unital and nuclear. If γ : A → M(B) is an absorbing ∗-homomorphism
for (A,B), then Γ : A → M(B ⊗ C), Γ(a) = γ(a) ⊗ 1C, is an absorbing
∗-homomorphism for (A,B ⊗ C).

Proof. If B = K this is essentially Kasparov’s absorption theorem [14]. By
[10, Thm. 2.13] it suffices to prove that for any finite subset F ⊂ A, any
ε > 0 and any ccp map σ : A → B ⊗ C we have σ ≺

F,ε
Γ. Since γ is an

absorbing ∗-homomorphism for (A,B), we have Φ ≺ γ and hence Φ ⊗ 1C ≺
γ ⊗ 1C = Γ for any ccp map Φ : A → B. Therefore it is enough to show
that σ ≺

F,ε
Φ ⊗ 1C for some ccp map Φ : A → B. Since C is nuclear, as a

consequence of Kasparov’s theorem, idC ≺ δ ⊗ 1C where δ : C → L(H) is
a unital faithful representation with δ(C) ∩ K(H) = {0}. Therefore there is
sequence of isometries vn ∈ LC(C,HC) with

lim
n→∞

‖c− v∗n(δ(c)⊗ 1C)vn‖ = 0

for all c ∈ C. Since HC is the closure of ⊕∞
n=1C one can perturb each vn to an

isometry vn : C → Ck(n) ⊂ HC . Therefore if δn : C → Mk(n)(C) denotes the
ccp map obtained by compressing δ to the subspace Ck(n) of H , we have

lim
n→∞

‖c− v∗n(δn(c)⊗ 1C)vn‖ = 0

for all c ∈ C. If we set Vn = idB ⊗ vn ∈ LB⊗C(B ⊗ C, (B ⊗ C)k(n)) and
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∆n = idB ⊗ δn : B ⊗ C → B ⊗Mk(n)(C), then

lim
n→∞

‖x− V ∗

n (∆n(x)⊗ 1C)Vn‖ = 0

for all x ∈ B ⊗ C. Consequently

lim
n→∞

‖σ(a)− V ∗
n (∆n(σ(a))⊗ 1C)Vn‖ = 0 (5)

for all a ∈ A. Note that Φn = ∆nσ : A → Mk(n)(B) is a ccp map. From (5)
we see that σ ≺

F,ε
Φn ⊗ 1C for some large enough n and this concludes the

proof. 2

Let N̄ = {1, 2, . . .}∪{∞} denote the one-point compactification of the natural
numbers.

Theorem 3.2 Let A, B be separable C*-algebras and let (ϕn, ψn) : A →
L(HB) be a sequence of Cuntz pairs. The following are equivalent:

(i) There is y ∈ KK(A,C(N̄) ⊗ B) with y(n) = [ϕn, ψn] for n ∈ N and
y(∞) = 0.

(ii) For any absorbing ∗-homomorphism γ : A → L(HB) there is a sequence
of unitaries un ∈ 1 +K(HB ⊕HB) such that for all a ∈ A

lim
n→∞

‖un (ϕn(a)⊕ γ(a)) u∗n − ψn(a)⊕ γ(a)‖ = 0 (6)

(iii) The sequence [ϕn, ψn] converges to zero in (KK(A,B), d).

Remark 3.3 It is easy to verify that condition (ii) is equivalent to asking
that there is some ∗-homomorphism γ : A → L(HB) and there is a sequence
of unitaries un ∈ I + K(HB ⊕ HB) satisfying (6) for all a ∈ A. This is very
similar to the proof of (ii) ⇔ (iii) of Theorem 2.1.

Proof. Given two sequence of ccp maps ϕn, ψn : A → L(En), we write
(ϕn)n ≈ (ψn)n if there is a sequence of unitaries un ∈ 1 +K(En) such that

lim
n→∞

‖unϕn(a)u
∗

n − ψn(a)‖ = 0

for all a ∈ A. With this notation, the condition (6) reads (ϕn⊕γ)n ≈ (ψn⊕γ)n.
It is easy to verify that ≈ is an equivalence relation and that (ϕn ⊕ ϕ

′
n)n ≈

(ψn ⊕ ψ
′
n)n whenever (ϕn)n ≈ (ψn)n and (ϕ′

n)n ≈ (ψ′
n)n.

We identify L(HB) with M(K ⊗ B) and K(HB) with K ⊗ B. Therefore the
set Ec(A,B) consists of pairs of ∗-homomorphisms (ϕ, ψ) : A → M(K ⊗ B)
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such that ϕ(a) − ψ(a) ∈ K ⊗ B for all a ∈ A. Since M(K ⊗ B ⊗ C(N̄)) =
Cs,b(N̄,M(K⊗B)) (the set of strictly continuous and bounded functions from
N̄ to M(K ⊗ B)) and K ⊗ B ⊗ C(N̄) = C(N̄,K ⊗ B), an element (∆,Γ) ∈
Ec(A,B ⊗C(N̄)) is completely determined by a family (δn, γn)n∈N̄ ⊂ Ec(A,B)
such that

lim
n→∞

δn(a) = δ∞(a), lim
n→∞

γn(a) = γ∞(a) (7)

in the strict topology of M(K ⊗ B) and

lim
n→∞

(δn(a)− γn(a)) = δ∞(a)− γ∞(a)

in the norm topology, for all a ∈ A. It is known [31, Thm. 3.2] that each
element of KK(A,B) is represented by a pair (δ, γ) ∈ Ec(A,B) where γ : A→
M(K⊗B) is any given absorbing ∗-homomorphism. In view of Proposition 3.1,
if y ∈ KK(A,B ⊗ C(N̄)), then we can write y = [∆,Γ] where Γ = γ ⊗ 1C

and γ : A → M(K ⊗ B) is a fixed absorbing ∗-homomorphism for (A,B). In
other words Γ is given by a constant family (γn)n∈N̄ with γn = γ. A crucial
consequence of our choice of Γ is that δn(a)− δ∞(a) ∈ K⊗B since it is equal
to (δn(a)− γ(a))− (δ∞(a)− γ(a)) and therefore

lim
n→∞

‖δn(a)− δ∞(a)‖ = 0 (8)

for all a ∈ A. Therefore we were able to pass from strict convergence in (7)
to norm convergence in (8). After this preliminary discussion we proceed with
the proof of the theorem. The equivalence (ii)⇔ (iii) follows immediately from
the definition of d.

(i) ⇒ (ii) It is convenient to consider first the situation when (ϕn, ψn) is a
sequence of Cuntz pairs where the second component ψn is fixed for all n and
equal to some absorbing ∗-homomorphism γ as above. By assumption there is
y ∈ KK(A,B⊗C(N̄)) such that y(n) = [ϕn, γ] and y(∞) = 0. Write y = [∆,Γ]
as above. Therefore [δn, γ] = [ϕn, γ] hence [δn, ϕn] = 0 and [δ∞, γ] = 0. Using
Theorem 2.1 we obtain

(δn ⊕ γ)n ≈ (ϕn ⊕ γ)n, (δ∞ ⊕ γ)n ≈ (γ ⊕ γ)n.

In view of (8) this gives

(ϕn ⊕ γ)n ≈ (γ ⊕ γ)n. (9)

We now proceed with the general case with (ϕn, ψn) as in (i). Using [31,
Thm. 3.2] again, we find a sequence (γn, γ) ∈ Ec(A,B) with [γn, γ] = [ϕn, ψn]
and γ unitally absorbing. Since [ϕn ⊕ γ, ψn ⊕ γn] = 0, by Theorem 2.1 we
obtain (ϕn⊕ γ⊕ γ)n ≈ (ψn⊕ γn⊕ γ)n. By the first part of the proof, we have
(γn⊕γ)n ≈ (γ⊕γ)n. Altogether this gives (ϕn⊕γ⊕γ)n ≈ (ψn⊕γ⊕γ)n. Since
γ is absorbing, (γ ⊕ γ)n ≈ (γ)n hence we obtain (ii): (ϕn ⊕ γ)n ≈ (ψn ⊕ γ)n.
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(ii)⇒ (i) Replacing ϕn by ϕn⊕γ and ψn by ψn⊕γ we may assume that there
are unitaries un ∈ I+K(HB) such that limn→∞ ‖unϕn(a)u

∗
n−ψn(a)‖ = 0 for all

a ∈ A. Since (unϕnu
∗
n, ψn) and (ϕn, ψn) have the same KK-class, after replacing

ϕn by unϕnu
∗
n we may further assume that limn→∞ ‖ϕn(a)−ψn(a)‖ = 0. Since

both ϕn and γ are absorbing, there is a sequence of unitaries wn ∈ L(HB) such
that wnϕn(a)w∗

n−γ(a) ∈ K(HB) and limn→∞ ‖wnϕn(a)w∗
n−γ(a)‖ = 0. Define

∗-homomorphisms Φ,Ψ : A → M(K ⊗ B ⊗ C(N̄)) by setting Φn = wnϕnw
∗
n,

Φ∞ = γ, Ψn = wnψnw
∗
n and Ψ∞ = γ. The family (Φ,Ψ) = (Φn,Ψn)n∈N̄ defines

an element y of KK(A,C(N̄) ⊗ B) such that y(n) = [Φn,Ψn] = [ϕn, ψn] for
n ∈ N and y(∞) = [Φ∞,Ψ∞] = [γ, γ] = 0. 2

We collect the previous results in the following form.

Theorem 3.4 Let A be B be separable C*-algebras. The topology of KK(A,B)
defined by the pseudometric d is separable and complete. A sequence (xn)∞n=1

converges to x∞ in KK(A,B) if and only if there is y ∈ KK(A,C(N̄) ⊗ B)
with y(n) = xn for all n ∈ N̄. Therefore the topology defined by d coincides
with Pimsner’s topology and hence the Kasparov product is continuous.

Proof. The first part follows from Proposition 3.4 and the theorem above.
Pimsner’s topology on KK(A,B) satisfies the first axiom of countability and
it was characterized in terms of convergence of sequences in an identical man-
ner [20]. It follows that the topology defined by d is equal to Pimsner’s topol-
ogy. 2

Remark 3.5 An important observation due to Pimsner is that the joint conti-
nuity of the Kasparov product follows right away from the equivalence xn → x∞
⇔ there is y ∈ KK(A,C(N̄)⊗B) with y(n) = xn for all n ∈ N̄. In particular
one can deduce the continuity of the Kasparov product with respect the topology
defined in Section 2 without identifying it first with Pimsner’s topology.

Although it is not used is this paper, let us notice that Rørdam’s group
KL(A,B) = KK(A,B)/0̄ satisfies the following continuity property.

Proposition 3.6 Let (An) be an inductive system of separable C*-algebras
with injective connective maps. Then KL( lim

←−
An, B) ∼= lim

−→
KL(An, B) for

any separable C*-algebra B.

Proof. We may assume that the connective maps An →֒ An+1 are inclu-
sion maps and let A = ∪nAn

∼= lim
−→

An. The restriction map KK(A,B) →

11



lim
←−

KK(An, B) is surjective by the lim
←−

1-exact sequence of [24]. Since the Kas-
parov product is continuous, the restriction map

ρ : KL(A,B)→ lim
←−

KL(An, B)

is well-defined and surjective. If γ : A→M(B ⊗K) is (A,B)-absorbing, then
the restriction of γ to each An is (An, B)-absorbing by [31]. The injectivity of ρ
follows now from Theorem 3.2. Indeed let x ∈ KK(A,B) be represented by a
Cuntz pair (ϕ, ψ) and assume that ρ(x) = 0. This implies that the restriction
of (ϕ, ψ) to KL(An, B) is zero for all n. Therefore if (an) is a sequence dense
in A with an ∈ An, there are unitaries un ∈ 1 +K(HB ⊕HB) such that for all
1 ≤ i ≤ n,

‖un (ϕ(ai)⊕ γ(ai)) u
∗
n − ψ(ai)⊕ γ(ai)‖ < 1/n.

Now this clearly implies the condition (ii) of Theorem 3.2 hence the constant
sequence x = [ϕ, ψ] converges to 0 in KK(A,B). Equivalently x ∈ 0̄. 2

Let us see how the previous results can be applied to ∗-homomorphisms. Stable
approximate unitary equivalence for two ∗-homomorphisms ϕ, ψ : A → B is
a subtle concept. A naive definition that would require approximate unitary
equivalence after taking direct sum with some ∗-homomorphism would not be
satisfactory due to a possible small supply of ∗-homomorphisms from A to B.

Definition 3.7 Let A, B be separable C*-algebras. Two ∗-homomorphisms
ϕ, ψ : A → B are called stably approximately unitarily equivalent if there is
a sequence of unitaries vn ∈ 1 + K(B ⊕HB) and absorbing ∗-homomorphism
γ : A→ M(B ⊗K) such that for all a ∈ A

lim
n→∞

‖vn (ϕ(a)⊕ γ(a)) v∗n − ψ(a)⊕ γ(a)‖ = 0 (10)

From Theorem 3.2 we obtain:

Corollary 3.8 Let A, B be separable C*-algebras. Two ∗-homomorphisms
ϕ, ψ : A → B are stably approximately unitarily equivalent if and only if
[ϕ]− [ψ] ∈ 0̄ in KK(A,B).

This result becomes more useful when there are many ∗-homomorphisms from
A to B or matrices over B. For illustration we generalize [7, Thm 5.1] and
[18, Thm 3.9]. Let A and B be unital separable C*-algebras with either A
or B is nuclear. Assume that there is a sequence of unital ∗-homomorphisms
ηn : A→ Mk(n)(B) such that for all nonzero a ∈ A the closed two-sided ideal
of B⊗K generated by {ηn(a) : n ∈ N} is equal to B⊗K. We may also assume
that each ηn appears infinitely many times in the sequence (ηn).

Corollary 3.9 Assume A and B are as above and let ϕ, ψ be two unital
∗-homomorphisms. Then [ϕ] − [ψ] ∈ 0̄ if and only if there is a sequence of
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unitaries un in matrices over B of suitable size such that

lim
n→∞

‖un(ϕ(a)⊕ γn(a))u∗n − ψ(a)⊕ γn(a)‖ = 0 (11)

for all a ∈ A, where γn = η1 ⊕ · · · ⊕ ηm(n) and m(n) ∈ N.

Proof. We verify only the nontrivial implication. To simplify notation, we
give the proof in the case when all k(n) = 1, i.e. ηn : A → B. The condition
[ϕ] − [ψ] ∈ 0̄ is equivalent to the condition that 0 belongs to the closure of
[ϕ]− [ψ]. If γ : A→ M(B ⊗K) is defined by

γ(a) = diag(η1(a), η2(a), · · · ),

then γ is a unitally absorbing representation by a result of [13]. By Theorem 3.2
there is a sequence of unitaries vn ∈ 1 + K(B ⊕HB) such that for all a ∈ A

lim
n→∞

‖vn (ϕ(a)⊕ γ(a)) v∗n − ψ(a)⊕ γ(a)‖ = 0 (12)

If em = 1B ⊕ · · · ⊕ 1B (m-times), then limm→∞ ‖[vn, em]‖ = 0 for all m. For
each n let m(n) be such that ‖[vn, em(n)]‖ < 1/n. By functional calculus, there
are unitaries un ∈ Mm(n)(B) with limn→∞ ‖un−em(n)vnem(n)‖ = 0. With these
choices we derive (11) by compressing in (12) by em(n). 2

Remark 3.10 Let A and B be as in Cor. 3.9 and let ϕ, ψ be two unital ∗-
homomorphisms. One shows that for any finite subset F of A and any ε there
is δ such that if d([ϕ], [ψ]) < δ then ϕ⊕ γn ∼

F,ε
ψ ⊕ γn for some n.

4 UCT and applications

Let A and B be separable C*-algebras. The total K-theory group K(A) =
⊕∞

n=0K∗(A; Z/n) has a natural action of the Bockstein operations Λ of [27].
In this section we show that if A satisfies the UCT, then KK(A,B)/ 0̄ is
isomorphic as a topological group with HomΛ(K(A), K(B)) endowed with
the topology of pointwise convergence. This is extremely useful since in order
to check that two KK-elements are close to each other it suffices to show that
the maps they induce on K(−) agree on some big enough finite subset. By
a result of J.L. Tu [32], the C*-algebra of an a-T-menable locally compact
second countable groupoid with Haar system satisfies the UCT. This shows
that there are large natural classes of non-nuclear C*-algebras satisfying the
UCT. As an application we show that the C*-algebra of a second countable
amenable locally compact maximally almost periodic group embeds in the
UHF algebra of type 2∞.
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If d∗ is the metric onK(B) with d∗(x, y) = 1 for x 6= y, thenHomΛ(K(A), K(B))
becomes a polish group with respect to the metric

d(µ, ν) =
∞
∑

n=1

1

2n
d∗(µ(xn), ν(xn)),

where {x1, x2, . . . } is an enumeration K(A).

A separable C*-algebra satisfies the UCT of [24] if and only if is KK-equivalent
to a commutative C*-algebra, if and only it satisfies the following universal
multi-coefficient exact sequence of [11]:

0→ PExt(K∗−1(A), K∗(B))→ KK(A,B)
Γ
→ HomΛ(K(A), K(B))→ 0.

(13)
Here PExt stands for the subgroup of Ext corresponding to pure extensions.
We refer the reader to the monograph [30] for an excellent introduction to
PExt. The map Γ is induced by the Kasparov product and therefore is con-
tinuous. This is also easily seen directly since if two projections are close to
each other then they have the same K-theory class.

If x ∈ KK(A,B) we denote Γ(x) by x. The following result can be deduced
from [29] for nuclear C*-algebras A in the bootstrap category of [26]. The idea
of using the continuity of the Kasparov product in its proof is borrowed from
[29].

Theorem 4.1 Let A and B be separable C*-algebras and assume that A sat-
isfies the UCT. Then

(a) xn → x in KK(A,B) if and only if xn → x in HomΛ(K(A), K(B)).

(b) The map KK(A,B)/ 0̄→ HomΛ(K(A), K(B)) is an isomorphism of topo-
logical groups. In particular KK(A,B)/ 0̄ is totally disconnected.

Proof. Part (a) is an immediate consequence of (b). Since the Kasparov prod-
uct is continuous, multiplication by a KK-invertible element y ∈ KK(A,A′)
induces a commutative diagram

KK(A′, B) //

��

HomΛ(K(A′), K(B))

��

KK(A,B) //HomΛ(K(A), K(B))

where the horizontal maps are continuous and the vertical maps are homeo-
morphisms. Therefore, after replacing A by a KK-equivalent C*-algebra (as in
[29]), we may assume that A is the closure of an increasing sequence (An) of
nuclear C*-subalgebras of A satisfying the UCT and with the property that
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each K∗(An) is finitely generated. In particular the map Γn : KK(An, B) →
HomΛ(K(An), K(B)) is an isomorphism. By the open mapping theorem all
we need to prove is that ker(Γ) = 0̄. The inclusion ker(Γ) ⊃ 0̄ follows from the
continuity of Γ. Conversely let [α, γ] ∈ ker(Γ) with γ absorbing. Let Fn ⊂ An

be a finite subset such that the union of (Fn) is dense in A. Since the diagram

KK(A,B) //

��

HomΛ(K(A), K(B))

��

KK(An, B) //HomΛ(K(An), K(B))

is commutative, we have that [α, γ] = 0 when regarded as an element of
KK(An, B). By Theorem 2.1 there is a unitary un ∈ 1 + K(HB ⊕ HB) such
that for all an ∈ Fn

‖un (α(a)⊕ γ(a)) u∗n − γ(a)⊕ γ(a)‖ < 1/n.

Therefore
lim

n→∞
‖un (α(a)⊕ γ(a))u∗n − γ(a)⊕ γ(a)‖ = 0

for all a ∈ A, hence d([α, γ], 0) = 0 and [α, γ] ∈ 0̄. 2

Proposition 4.2 Let A and B be separable C*-algebras and assume that A
satisfies the UCT and that the group K∗(B) is finitely generated. Then for any
subgroup G of KK(A,B) and any ε > 0 there is a finitely generated subgroup
H of G which is ε-dense in G, i.e. for every x ∈ G there is y ∈ H such that
d(x, y) < ε.

Proof. Let U = {z ∈ KK(A,B) : d(z, 0) < ε}. Since the map

Γ : KK(A,B)→ HomΛ(K(A), K(B))

is open, there exists an integer m ≥ 0 and t1, . . . , tn ∈ K(A)m such that

{α ∈ HomΛ(K(A), K(B)) : α(t1) = · · · = α(tn) = 0} ⊂ Γ(U).

Here K(A)m denotes the subgroup of K(A) generated by K∗(A; Z/k) with
k ≤ m. Let Γn : G →

∏n
i=1K(B)m be defined by Γn(x) = (x(t1), . . . , x(tn)).

Since K∗(B) is abelian and finitely generated so is K(B)m and its subgroup
Γn(G). Therefore there is a finitely generated subgroup H of G such that
Γn(G) = Γn(H). In particular for any x ∈ G there is y ∈ H such that x(ti) =
y(ti) for all i, 1 ≤ i ≤ n. Therefore x − y ∈ Γ(U) and x − y ∈ U + 0̄. We
conclude that d(x, y) = d(x− y, 0) < ε. 2

Let us recall that a C*-algebra is called nuclearly embeddable if it has a faithful
nuclear representation on a Hilbert space. Kirchberg proved that a separable
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C*-algebra is nuclearly embeddable if and only if is exact. Using notation
introduced before Proposition 3.1 we have:

Theorem 4.3 Let A be a separable unital exact RFD C*-algebra satisfying
the UCT. For any finite subset F of A and any ε > 0 there are unital finite
dimensional irreducible ∗-representations π1, . . . , πr such that for any unital
finite dimensional ∗-representation π : A→ L(Hπ),

π ⊕m1π1 ⊕ · · · ⊕mrπr ∼
F,ε
k1π1 ⊕ · · · ⊕ krπr

for some nonnegative integers m1, . . .mr, k1, . . . kr.

Proof. Let fdr(A) denote the set of unital finite dimensional ∗-representations
of A. If π ∈ fdr(A), we denote by [π] its class in KK(A,C). From the definition
of the metric d we derive the following observation. Given F and ε as in the
statement, there is ε0 > 0 such that if π and π′ are unital finite dimensional
∗-representations of A on the same space Hπ with d([π], [π′]) < ε0 then for
any unitally absorbing ∗-homomorphism γ : A → L(H) there is a unitary
u ∈ 1 +K(Hπ ⊕H) such that

‖π(a)⊕ γ(a)− u(π′(a)⊕ γ(a))u∗‖ < ε

for all a ∈ F . Since A is separable there is a sequence (πn)∞n=1 in fdr(A) whose
unitary orbit is dense in fdr(A) in the point-norm topology. This means that
for any π ∈ fdr(A), any finite subset F of A and any ε > 0, π ∼

F,ε
πn for some n.

Consequently it suffices to prove the theorem only for representations π that
appear in the sequence (πn)∞n=1. We may assume that each πn is repeating
infinitely many times. Let G be the subgroup KK(A,C) generated by the set
{[πn] : n ≥ 1}. By Proposition 4.2 there is a finitely generated subgroup H
of G that is ε0-dense in G. Therefore there is r such that H is generated by
[π1], . . . , [πr]. Fix a unitally absorbing ∗-homomorphism γ : A→ L(H). Since
A is nuclearly embeddable, by enlarging r, we may arrange that

γ ∼
F,ε
∞ · (π1 ⊕ · · · ⊕ πr) (14)

by an approximation result of [6]; see also [8, Prop. 6.1] for a more direct proof.
Let π be as in the statement of the theorem. We may assume that π appears
in the sequence (πn)∞n=1 and therefore its K-homology class [π] belongs to G.
It follows that there is h ∈ H with d([π], h) < ε0. Thus there are positive
integers m1, . . .mr, k1, . . . kr such that

d([π ⊕m1π1 ⊕ · · · ⊕mrπr], [k1π1 ⊕ · · · ⊕ krπr]) < ε0.

By our choice of ε0 this implies that there is a unitary u of the form 1+compact
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such that

‖π(a)⊕m1π1(a)⊕· · ·⊕mrπr(a)⊕γ(a)−u(k1π1(a)⊕· · ·⊕krπr(a)⊕γ(a))u
∗‖ < ε

for all a ∈ F . Using (14) and compressing by a suitable finite dimensional
projection e we obtain that there exist a positive integer N and a unitary v
close to eue such that

‖π(a)⊕(m1+N)π1(a)⊕· · ·⊕(mr+N)πr(a)−v((k1+N)π1(a)⊕· · ·⊕(kr+N)πr(a))v
∗‖ < 3ε

for all a ∈ F . This concludes the proof. 2

If A is unital, the subgroup of K0(C) = Z generated by {[π(1A)] : π ∈ fdr(A)}
is isomorphic to dZ for some integer d ≥ 1. The number d is a topological
invariant of A and is denoted by d(A).

Theorem 4.4 Let A be a separable exact RFD C*-algebra satisfying the UCT.
Then A embeds in the UHF C*-algebra of type 2∞ denoted by B. If A is unital
then it embeds as a unital C*-subalgebra in Md(A)(B).

Proof. By adding a unit to A (whether or not A has already a unit) we have
d(Ã) = 1. Thus it suffices to prove only the second part of the theorem. Let
(Fn)∞n=1 be an increasing sequence of finite subsets of A whose union is dense in
A and let εn = 1/2n. By Theorem 4.3 there exist a sequence (πn)∞n=1 in fdr(A)
and integers 0 < r(1) < r(2) < · · · < r(n) < . . . , such that if Rn ⊂ fdr(A)
consists of all unital representations unitarily equivalent to representations of
the form k1π1 ⊕ · · · ⊕ kr(n)πr(n) with ki > 0, then for any π ∈ fdr(A) there are
α, β ∈ Rn with π ⊕ α ∼

Fn,εn

β. After changing notation if necessary, we may

assume that there is γ1 ∈ R1, γ1 : A→Mk(1)(C) such that k(1) = 2md(A) for
some positive integer m. We will construct inductively a sequence of unital
∗-homomorphisms γn : A→Mk(n)(C) with γn ∈ Rn and such that ‖γn+1(a)−
m(n)γn(a)‖ < εn for all a ∈ Fn, where m(n) is some power of 2. Note that
γn will satisfy limn→∞ ‖γn(a)‖ = ‖a‖ for al a ∈ A since the sequence (πn)∞n=1

separates the elements of A. Suppose that γ1, . . . γn were constructed. Pick
some π ∈ Rn+1. Then π ⊕ α ∼

Fn,εn

β for some α, β ∈ Rn. Since γn ∈ Rn, there

exists a power of 2 denoted by m(n) and β ′ ∈ Rn such that β⊕β ′ is unitarily
equivalent to m(n)γn hence π ⊕ α⊕ β ′ ∼

Fn,εn

m(n)γn. It follows that there is a

finite dimensional unitary u such that ‖u(π⊕α⊕β ′)(a)u∗−m(n)γn(a)‖ < εn

for all a ∈ Fn. Setting γn+1 = u(π ⊕ α ⊕ β ′)u∗ we complete the induction
process.
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Let ιn : Mk(n)(C) →֒ lim
−→

Mk(n)(C) ∼= Md(A)(B) be the canonical inclusion.

Having the sequence γn available, we construct a unital embedding γ : A →
Md(A)(B) by defining γ(a), a ∈ ∪∞n=1Fn, to be the limit of the Cauchy sequence
(ιnγn(a)) and then extend to A by continuity. 2

Remark 4.5 The AF-embeddability of a separable nuclear RFD C*-algebra
satisfying the UCT was proved in [17]. The approximation property given by
Theorem 4.3 is a stronger property than UHF-embeddability. It is significant
that it holds for exact C*-algebras since as noted in [8] the UHF-embeddability
of the cone of an exact separable RFD C*-algebra (which satisfies the UCT by
virtue of being contractable) implies Kirchberg’s fundamental characterization
of exact separable C*-algebras as subquotients of UHF algebras [15]. Subse-
quently Ozawa proved that AF-embeddability of separable exact C*-algebras is
a homotopy invariant [19].

A locally compact group G is called maximally almost periodic (abbreviated
MAP) if it has a separating family of finite dimensional unitary representa-
tions. Residually finite groups are examples of MAP groups. If G is a second
countable amenable locally compact MAP group, then C∗(G) is residually fi-
nite dimensional by [2] and satisfies the UCT by [32]. By Theorem 4.4 we have
the following.

Corollary 4.6 The C*-algebra of a second countable amenable locally com-
pact MAP group G is embeddable in the UHF C*-algebra of type 2∞.

Remark 4.7 If in addition we assume that G is discrete, then G injects in
the unitary group of B. Note that this result is non-trivial even for the discrete
Heisenberg group H3, since H3 does not have faithful finite dimensional unitary
representations.

5 From KL-equivalence to KK-equivalence

In this section we address the question of when the Hausdorff quotient of
KK(A,B) admits an algebraic description. The following definition due to H.
Lin appears in [18] except that the topology considered there is the Brown-
Salinas topology (that identify with Pimsner’s topology in the next section).

Definition 5.1 A separable C*-algebra A satisfies the AUCT if the natural
map

KK(A,B)

0̄
→ HomΛ(K(A), K(B))

is a bijection for all separable C*-algebras B.
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Let KL(A,B) denote the quotient group KK(A,B)/0̄. Since the Kasparov
product is continuous, it descends to an associative product KL(A,B) ×
KL(B,C)→ KL(A,C). The groupKL(A,B) was first introduced by Rørdam
[21] as the quotient of KK(A,B) by PExt(K∗(A), K∗−1(B)). The assumption
that A satisfies the UCT was necessary in order to make PExt(K∗−1(A), K∗(B))
a subgroup of KK(A,B) via the inclusion

PExt(K∗−1(A), K∗(B)) →֒ Ext(K∗−1(A), K∗(B)) →֒ K(A,B).

In the previous section 4 we showed that if A satisfies the UCT then
PExt(K∗−1(A), K∗(B)) coincides with the closure of zero, hence the terminol-
ogy is consistent.

Definition 5.2 Two separable C*-algebras are called KK-equivalent, written
A ∼KK B, if there exist α ∈ KK(A,B) and β ∈ KK(B,A) such that

αβ = [idA], βα = [idB].

We say that A and B are KL-equivalent, written A ∼KL B if there exist
α ∈ KK(A,B) and β ∈ KK(B,A) such that

αβ − [idA] ∈ 0̄, βα− [idB] ∈ 0̄.

Equivalently, A ∼KL B if and only if there exist α ∈ KL(A,B) and β ∈
KL(B,A) such that

αβ = [idA], βα = [idB].

Note that KL-equivalence corresponds to the notion of isomorphism in the
category with objects separable C*-algebras and morphisms from A to B given
by KL(A,B).

A separable unital simple unital purely infinite nuclear C*-algebra A is called
a Kirchberg C*-algebra [23]. One says that A is in standard form if [1A] = 0
in K0(A).

The following result is due to H. Lin, except that he works with the Brown-
Salinas topology.

Theorem 5.3 ([18]) Let A and B be unital Kirchberg C*-algebras in stan-
dard form.

(a) Let ϕ, ψ : A → B be unital ∗-homomorphisms. If [ϕ] = [ψ] in KL(A,B)
then ϕ ≈u ψ.

(b) If A ∼KL B then A is isomorphic to B.

Proof. We include a new simple proof. (a) Since the constant sequence [ψ]
converges to [ϕ] there is y ∈ KK(A,C(N̄)⊗B) such that y(n) = [ψ] for n ∈ N
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and y(∞) = [ϕ]. Since the unit 1 of C(N̄) ⊗ B satisfies 1 ⊕ 1 ∼ 1 it follows
from Kirchberg’s classification theorem [23, Thm. 8.3.3] that there is a unital
∗-homomorphism Ψ : A→ C(N̄)⊗B with y = [Ψ]. Note that Ψ is given by a
family of ∗-homomorphisms, Ψ = (ψn)n∈N̄ satisfying

lim
n→∞

‖ψn(a)− ψ∞(a)‖ = 0 (15)

for all a ∈ A. Since [ψn] = y(n) = [ψ] it follows from [23, Thm. 8.3.3] that
ψn ≈u ψ for all n ∈ N and similarly ψ∞ ≈u ϕ since [ψ∞] = y∞ = [ϕ]. In com-
bination with (15) this gives ϕ ≈u ψ. The converse follows from Theorem 3.2.

(b) Let α and β be as in Definition 5.2. Applying [23, Thm. 8.3.3] again we
lift α and β to unital ∗-homomorphisms ϕ : A → B and ψ : B → A such
that [ϕψ]− [idB] ∈ 0̄ and [ψϕ]− [idA] ∈ 0̄. From part (a) we have ϕψ ≈u idB

and ψϕ ≈u idA. It follows that A is isomorphic to B by Elliott’s intertwining
argument. 2

Corollary 5.4 Two separable nuclear C*-algebras are KK-equivalent if and
only if they are KL-equivalent.

Proof. Since any separable nuclear C*-algebra is KK-equivalent to a Kirch-
berg C*-algebra [23, Prop. 8.4.5], this follows from Theorem 5.3. 2

It is known that the validity of UCT for all nuclear separable C*-algebras
is equivalent to the statement that KK(A,A) = 0 for all nuclear separable
C*-algebras A with K∗(A) = 0. The following answers an informal question of
Larry Brown and shows that ifA fails to satisfy the UCT thenKK(A,A)/0̄ 6= 0.

Corollary 5.5 Let A be a separable nuclear C*-algebra. If KK(A,A) = 0̄
then A satisfies the UCT and in fact A ∼KK 0.

The following result shows that a nuclear separable C*-algebra satisfies the
AUCT if and only if it satisfies the UCT. This answers a question of H. Lin
[18].

Theorem 5.6 Let A be a separable nuclear C*-algebra. The following asser-
tions are equivalent.

(i) A satisfies the UCT.

(ii) A satisfies the AUCT.

(iii) A is KL-equivalent to a commutative C*-algebra.
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(iv) A is KK-equivalent to a commutative C*-algebra.

Proof. (i)⇒ (ii) follows from Theorem 4.1. (ii)⇒ (iii) Assume that A satisfies
the AUCT. Let C be a separable commutative C*-algebra with K∗(A) ∼=
K∗(A). Since C satisfies the UCT, there is α ∈ KK(C,A) such that the
induced map α∗ : K∗(C)→ K∗(A) is a bijection. Then Γ(α) : K(C)→ K(A)
is a bijection by the five lemma. We denote by α̇ the image of α in KL(C,A).
For a separable C*-algebra B, consider the commutative diagram

KL(A,B) //

��

HomΛ(K(A), K(B))

��

KL(C,B) //HomΛ(K(C), K(B))

where the vertical maps are x 7→ α̇x and composition with Γ(α). The top
horizontal map is bijective by assumption and the bottom horizontal map is
bijective by Theorem 4.1. Thus the map KL(A,B)→ KL(C,B) is a bijection
and similarly KL(A,C) → KL(A,A), x 7→ xα̇ is a bijection. By the usual
argument it follows that α̇ has an inverse β̇ ∈ KL(A,C).

(iii) ⇒ (iv) follows from Corollary 5.4. (iv) ⇒ (i) was proved in [24]. 2

Finally we mention that similar methods were used to prove that if a nuclear
separable C*-algebra A can be approximated by C*-subalgebras satisfying the
UCT, then A satisfies the UCT (see [9]).

6 KK-topology versus Ext-topology

For separable C*-algebras, Kasparov has established an isomorphism

KK(A,B) ∼= Ext−1(SA,B).

These two groups come with natural topologies, Pimsner’s topology and re-
spectively the Brown-Salinas topology. In these section we show that Kas-
parov’s isomorphism is a homeomorphism.

Lemma 6.1 Let A, B be separable C*-algebras and let (xn) and x∞ be ele-
ments of Ext−1(A,B). If xn → x∞ in the Brown-Salinas topology then there
is y ∈ Ext−1(A,C(N̄)⊗ B) such that y(n) = xn for all n ∈ N̄.
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Proof. The elements of Ext−1(A,B) are represented by ∗-homomorphisms

σ : A→ Q(B ⊗K) = M(B ⊗K)/B ⊗K

that admit ccp liftings A → M(B ⊗ K). Such a map σ is called liftable. Let
(σn), σ∞ be liftable ∗-homomorphisms with xn = [σn] and x∞ = [σ∞]. Since
xn → x∞ in the Brown-Salinas topology, if γ : A→ M(B⊗K) is an absorbing
∗-homomorphism, then there is a sequence of unitaries un ∈ Q(B⊗K) liftable
to unitaries in M(B ⊗K) such that

lim
n→∞

‖un(σn(a)⊕ γ̇(a))u∗n − σ∞(a)⊕ γ̇(a)‖ = 0

for all a ∈ A. Since [σn] = [un(σn ⊕ γ̇)u
∗
n] and [σ∞] = [σ∞ ⊕ γ̇], without loss

of generality we may assume that

lim
n→∞

‖σn(a)− σ∞(a)‖ = 0 (16)

for all a ∈ A. Define a ∗-homomorphism

η : A→ C(N̄)⊗Q(B⊗K) ∼= C(N̄)⊗M(B⊗K)/C(N̄)⊗B⊗K ⊂ Q(C(N̄)⊗B⊗K),

by η(a)(n) = σn(a). We want to argue that η is liftable. For k ∈ N define
η(k) : A → C(N̄) ⊗ Q(B ⊗ K) ⊂ Q(B ⊗ C(N̄) ⊗ K) by η(k)(a)(n) = σn(a)
if n ≤ k and η(k)(a)(n) = σ∞(a) if n > k. Note that η(k) lifts to a ccp map
A→ C(N̄)⊗M(B ⊗K). Since

lim
n→∞

‖η(k)(a)− η(a)‖ = 0

by (16), it follows by a result of Arveson [1, Thm. 6] that η is liftable hence
y = [η] ∈ Ext−1(A,C(N̄)⊗B). It is clear that y(n) = xn for all n ∈ N̄. 2

Let β be a generator of KK1(SC,C) ∼= Z. The Kasparov product

KK(A,B)⊗KK1(SC,C)→ KK1(SA,B)

induces an isomorphism

χ : KK(A,B) ∋ α 7→ α⊗ β ∈ KK1(SA,B) ∼= Ext−1(SA,B).

A crucial step in proving a converse to Lemma 6.1 is to show that every
element y ∈ Ext−1(A,C(N̄)⊗B) is represented by a ∗-homomorphism whose
image is contained in the subalgebra C(N̄)⊗Q(B ⊗K) of generalized Calkin
algebra Q(C(N̄)⊗B ⊗K).

Proposition 6.2 Let A, B be separable C*-algebras. The map χ : KK(A,B)→
Ext−1(SA,B) is a homeomorphism, where KK(A,B) is given the Pimsner
topology and Ext−1(SA,B) the Brown-Salinas topology.
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Proof. Evaluation at n ∈ N̄ gives a commutative diagram

KK(A,C(N̄)⊗B)
χ

//

��

Ext−1(SA,C(N̄)⊗ B)

��

KK(A,B)
χ

//Ext−1(SA,B)

Since χ is a bijection, in view of Theorem 3.2, it suffices to prove that if (xn)n∈N̄

consists of elements of Ext−1(SA,B), then xn → x∞ in the Brown-Salinas
topology if and only if there is y ∈ Ext−1(SA,C(N̄)⊗B) such that y(n) = xn

for all n ∈ N̄. The implication (⇒) follows from Lemma 6.1. To prove the
converse (⇐) it suffices to show that every element y ∈ Ext−1(SA,C(N̄)⊗B)
is represented by a ∗-homomorphism

Φ : SA→ C(N̄)⊗Q(B ⊗K) ⊂ Q(C(N̄)⊗ B ⊗K). (17)

Indeed, if (Φ(n))n∈N̄ are the components of Φ, then

lim
n→∞

‖Φ(n)(a)− Φ(∞)(a)‖ = 0

for all a ∈ A, hence y(n) = [Φ(n)] converges to y(∞) = [Φ(∞)] in the Brown-
Salinas topology.

We are going to verify (17) by using an explicit description of the map χ :
KK(A,B) → Ext−1(SA,B). Let α ∈ KK(A,B) be represented by a Cuntz
pair (ϕ, ψ) or equivalently, by a triple













ϕ 0

0 ψ





 , HB ⊕HB,







0 1

1 0











 .

Let β ∈ KK1(SC,C) be represented by (λ, ℓ2(Z), s) where λ is the restriction
to SC of the unital ∗-homomorphism λ : C(S1) → L(ℓ2(Z)), λ(z) = U ,
U is the bilateral shift and s is the unitary symmetry of ℓ2(Z) defined by
s(δk) = −sgn(k)δk. Then it follows from the construction of the Kasparov
product that α⊗ β ∈ KK1(SA,B) is represented by













ϕ⊗ λ 0

0 ψ ⊗ λ





 , HB ⊗ ℓ
2(Z)⊕HB ⊗ ℓ

2(Z),







1⊗ s 0

0 −1⊗ s











 .

Its image in Ext−1(SA,B) is obtained by compressing







ϕ⊗ λ 0

0 ψ ⊗ λ





 to the

positive eigenspace of







1⊗ s 0

0 −1⊗ s





 (which equals HB ⊗ ℓ2(Z−) ⊕ HB ⊗
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ℓ2(Z+) ∼= ℓ2(Z, HB)) and composing this compression with the canonical map
q onto the generalized Calkin algebra. Define η : A→ L(ℓ2(Z, HB)) by

η(a) = (. . . , ϕ(a), ϕ(a), ψ(a), ψ(a), . . . )

and let U denote the bilateral shift on ℓ2(Z, HB). Then [η(a), U ] ∈ K(ℓ2(Z, HB))
for all a ∈ A and in view of the previous discussion it is clear that the map

Φ : SA = C0(0, 1)⊗ A→ L(ℓ2(Z, HB))/K(ℓ2(Z, HB)) ∼= Q(B ⊗K),

Φ(f ⊗ a) = q(f(U)η(a)), f ∈ C0(0, 1), a ∈ A, corresponds to the class of
α⊗β in Ext−1(SA,B) under the isomorphism KK1(SA,B) ∼= Ext−1(SA,B).
In conclusion χ[ϕ, ψ] = [Φ]. Let us apply this description of χ with B re-
placed by C(N̄) ⊗ B. As shown in the proof of Theorem 3.2, any element of
KK(A,C(N̄) ⊗ B) is represented by a Cuntz pair with ϕ, ψ : A → C(N̄) ⊗
L(HB). It follows that the range of the map η is contained in C(N̄)⊗L(ℓ2(Z, HB)).
Since U belongs to the same algebra, the corresponding Φ maps SA into
C(N̄)⊗Q(B ⊗K(ℓ2(Z)). Since χ is bijective, this completes the proof. 2

7 Open questions

1. Let A, B be separable C*-algebras with A nuclear. Is KK(A,B)/0̄ totally
disconnected?

2. Let A be a separable nuclear C*-algebra. Is it true that for any ε > 0
there is a finitely generated subgroup of the K-homology group K0(A) which
is ε-dense in K0(A)?

Both questions have positive answers if one assumes that A satisfies the UCT,
as seen in Section 4.
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